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Abstract

In this work, I provide two results. The first result is the use of fractional
calculus in providing a more rigorous foundation for dimensional regular-
ization. I used the Riemann-Liouville fractional integral of order one-half
to recover the volume of an n-ball and as special case of the Erdelyi-Kober
operator to recover the surface area of an n-sphere. By writing the volume
and surface area in terms of fractional calculus it provides a natural way of
generalizing the volume and surface area of a sphere to non-integer dimen-
sion space, which I referred to as an α-sphere. This generalization recovers
the formula used in dimensional regularization, which reinforces the current
methods. The use of fractional derivatives, which is known to have a variety
of equally valid definitions, also points to the possibility of formulating a
variety of equally valid dimensional regularizations.

The second result is the use of the Baker-Haussdorf formula, a formula
commonly used in quantum field theory, to establish a series formula for
tempered fractional derivative, which is valid for all fractional derivatives.
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Chapter 1

Background

1.1 Fractional Calculus

Fractional calculus is the study of non-integer order integral and derivative
operators, i.e. d0.5

dx0.5
[1]. In fact, the name “fractional” is a misnomer because

we are also interested in non-rational order integral and derivative operators.
A fractional derivative is a linear operator which satisfies

Dα
x (Dβ

xf(x)) = Dα+β
x f(x), (1.1)

where orders α and β are complex numbers and agree with the conventional
derivative when the order is an integer [2]. Note that these conditions are not
enough to identify a unique operator, so there are many different fractional
derivatives and integrals. This is akin to the fact that the square root of a
real number is not unique as there is ambiguity in the sign. A very popular
fractional derivative is the Riemann-Liouville (RL) fractional integral, which
is defined as

RL
aD
−α
x f(x) =

1

Γ(α)

∫ x

a

f(t)(x− t)α−1dt. (1.2)

Figure (1.1) plots the function x, its first order integral 1
2
x2, as well as a

variety of intermediate orders.
The fractional Riemann-Liouville tempered derivative is a modification

of the Riemann-Liouville fractional derivative (1.2) where the integrand is
multiplied by an exponential factor [3, 4]

RL
aD
−α,λ
x f(x) =

1

Γ(α)

∫ x

a

e−λ(t−x)(t− x)α−1f(t)dt. (1.3)
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Figure 1.1: A series of Riemann-Liouville fractional integration of f(x) = x
with initial condition a = 0 using eq. (1.2). Notice that the 0th order frac-
tional integral does nothing to the function f(x) and the 1st order fractional
integral agrees with conventional integral, namely

∫ x
0
tdt = 1

2
x2.
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Throughout this thesis, I will use the following operator form,

RL
aD
−α,λ
x = eλx̂ RL

aD
−α
x e−λx̂. (1.4)

1.2 Dimensional Regularization in Quantum

Field Theory

Many integrals in quantum field theory diverge and can be resolved through
regularization. One type of regularization is dimensional regularization,
which is to take the dimension of the integral to be a real number in or-
der to smoothly approach an integer such as d = 4.
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Chapter 2

Dimensional Regularization in
terms of Fractional Calculus

2.1 Introduction to Dimensional Regulariza-

tion

The method of dimensional regularization aims to characterize the diver-
gences in integrals found in quantum field theory using the notion of a non-
integer order dimension [5–7]. As an example, let’s consider the following
integral ∫

Rd
ddq

1

(q2 +m2)2
. (2.1)

More information can be found in [5] concerning the scattering process that
this integral represents. Because the integrand is spherically symmetric, the
integral can be rewritten in polar coordinates. The closed form formula for
the surface area of an n-sphere is

Sn(r) =
2π

n+1
2

Γ(n+1
2

)
rn. (2.2)

Then, our integral of interest becomes∫ ∞
0

dqSd−1(q)
1

(q2 +m2)2

=
2π

d
2

Γ(d
2
)

∫ ∞
0

dq
qd−1

(q2 +m2)2
(2.3)
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Then, we consider the value of this integral when d no longer an integer which
results in

π
d
2 Γ(2− d

2
)md−4 (2.4)

which is divergent when d = 4.
This marks the motivation for my work which is to address the sudden

relaxation of d, which represents the number of independent variables in eq.
(2.1), to a continuous value in eq. (2.4). Strictly speaking, eq. (2.2) is only
valid for integer n, so it’s not valid to simply relax d to a real or complex
number. The goal of this chapter is to construct a stronger mathematical
foundation for this method.

2.2 α-sphere, a generalization of n-spheres

This section provides two methods to arrive at one definition of the volume
and surface area of a sphere in non-integer dimensions, which I dub as the
α-sphere.

2.2.1 Method 1 of defining volume and surface area of
spheres in non-integer space

The volume of an n-ball can be defined according to the following recurrence
relation:

Vn+1(r) =

∫ r

−r
Vn(
√
r2 − x2)dx. (2.5)

Coupled with the fact that V0(r) = 2r, this recurrence relation can be used to
generate all subsequent Vn. This equation can be interpreted geometrically
as the volume of an n+1-ball is made up of slices of n-balls of varying radius.
Let’s consider the substitution y =

√
r2 − x2, which then can be manipulated
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into x =
√
r2 − y2:

Vn+1(r) = 2

∫ r

0

Vn(
√
r2 − x2)dx (2.6)

dx =
−y

r2 − y2
dy (2.7)

Vn+1(r) = 2

∫ 0

r

Vn(y)
−y√
r2 − y2

dy (2.8)

Vn+1(r) = 2

∫ r

0

Vn(y)
y√

r2 − y2
dy (2.9)

Note that d(y2) = 2ydy, so

Vn+1(r) =

∫ y=r

0

Vn(y)
1√

r2 − y2
d
(
y2
)

(2.10)

Equation (2.10) is of the same form as a Riemann Liouville fractional integral
(1.2), so it can be rewritten as

Vn+1(r) = Γ(
1

2
) · RL

0D
− 1

2

r2 Vn(r). (2.11)

The factor of Γ(1
2
) is equal to

√
π so,

Vn+1(r) =
√
π · RL

0D
− 1

2

r2 Vn(r). (2.12)

With this, we have successfully redefined the recurrence relation for the vol-
ume of spheres (in integer dimensions) using fractional calculus. As an ex-
ample, let’s compute the volume of a sphere V3(r) using the area of a circle
V2(r) = πr2.

√
π · RL

0D
− 1

2

r2 V2(r) (2.13)

=
√
π · RL

0D
− 1

2

r2 (πr2) (2.14)

=
√
ππ · RL

0D
− 1

2

r2 r
2 (2.15)
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Note that the Riemann-Liouville definition of fractional integration can be
computed using a formula similar to the “power rule,” i.e. RL

0D
−α
x xβ =

Γ(β+1)
Γ(β+α+1)

xβ+α.

=
√
ππ

Γ(1 + 1)

Γ(3
2

+ 1)
(r2)

3
2 (2.16)

=
√
ππ

1
3
2

1
2

√
π
r3 (2.17)

=
4πr3

3
= V3(r). (2.18)

Because eq. (2.12) is written in terms of fractional integration, it’s natural to
make use of the rule from equation (1.1) to extend the definition of n-spheres
according to

Vn+α(r) = π
α
2 · RL

0D
−α

2

r2 Vn(r). (2.19)

I define the surface area by differentiating the volume with respect to r
making use of the fact that a sphere is made up of many shells.

Sα+n−1(r) =
d

dr
Vα+n(r) (2.20)

Sα+n−1(r) = π
α
2

d

dr
RL

0D
−α

2

r2 Vn(r) (2.21)

Using the chain rule, d
dr

= dr2

dr
d

dr2
= 2r d

dr2
.

Sα+n−1(r) = π
α
2 2r

d

dr2
RL

0D
−α

2

r2 Vn(r) (2.22)

Sα+n−1(r) = π
α
2 2r · RL

0D
−α

2

r2
d

dr2
Vn(r) (2.23)

Sα+n−1(r) = π
α
2 2r · RL

0D
−α

2

r2

(
1

2r

d

dr
Vn(r)

)
(2.24)

Sα+n−1(r) = π
α
2 r · RL

0D
−α

2

r2

(
r−1Sn−1(r)

)
(2.25)

Note, that this is a special case of the Erdélyi-Kober operator [8].
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2.2.2 Method 2 of defining spheres in non-integer space

Another way to achieve the same result is to begin with the following recur-
rence relation:

Sn+2(r) = 2πr

∫ r

0

Sn(r′)dr′, (2.26)

which requires the two initial conditions S0(r) = 2 and S1(r) = 2πr. In
terms of operators, I refer to eq. (2.26) as

Sn+2(r) = 2πr̂ · 0D
−1
r Sn(r). (2.27)

where 0D
−1
r is simply a shorthand for integration.

The goal of this section is to fractionalize the operator 2πr̂ ·0D−1
r in a way

that is also consistent with Sn+1(r) =
√

2πr̂ · 0D
−1
r Sn(r). Finding roots of

this operation by inspection is nontrivial, so I begin my analysis by funding
the eigenfunctions of r̂ · 0D

−1
r . Let v(r) be a function with the power series

expansion

v(r) =
∞∑
k=0

akr
k. (2.28)

Applying the operator of interest to v(r) yields

r̂ · 0D
−1
r v(r) = r ·

∞∑
k=0

ak
k + 1

rk+1 (2.29)

r̂ · 0D
−1
r v(r) =

∞∑
k=0

ak
k + 1

rk+2. (2.30)

Letting v(r) be an eigenfunction, we get

r̂D−1
r v(r) = λv(r) (2.31)

∞∑
k=0

ak
k + 1

rk+2 = λ

∞∑
k=0

akr
k, (2.32)

Establishing that:

ak
k + 1

= λak+2 for k ≥ 0 (2.33)
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This recurrence relation shows that there are two eigenfunctions:

v0(r) = 1 + r2 +
r4

3
+

r6

3 · 5
+ . . . =

∞∑
k=0

r2k

λk(2k − 1)!!
(2.34)

and

v1(r) = r +
r3

2
+

r5

2 · 4
+ . . . =

∞∑
k=0

r2k+1

λk(2k)!!
(2.35)

where !! denotes the double factorial 1. The double factorial of an even num-
ber can be reduced to (2k)!! = 2kk!, which simplifies the second eigenfunction
to

v1(r) = r
∞∑
k=0

r2k

(2λ)kk!
= re

1
2λ
r2 (2.36)

The double factorial of an odd number can be reduced to (2k+1)!! = 2k√
π
Γ(k+

1
2
), which simplifies the first eigenfunction to

v0(r) =
√
π
∞∑
k=0

r2k

(2λ)kΓ(k + 1
2
)

=
√
πE1, 1

2
(

1

2λ
r2) (2.37)

where Eα,β(x) is the Mittag-Leffler function. The Mittag-Leffler function
plays a very important role in fractional calculus [9]. This is very surprising
as there is no fractional calculus to be seen as of yet. The Mittag-Leffler
function is a generalization of the exponential function, with E1,1(x) = ex,
and so the second eigenfunction can also be described using the Mittag-Leffler
function as v1(r) = rE1,1( 1

2λ
r2). Note, that these are, strictly speaking, these

are not eigenfunctions as there are extra terms relating to the constant of
integration:

r̂ · 0D
−1
r v0(r) = λv0(r)− 1 (2.38)

r̂ · 0D
−1
r v1(r) = λv1(r)− x (2.39)

These two eigenfunctions are related according to [9]

RL
0D
−α
z (zγ−1Eβ,γ)(az

β) = zα+γ−1Eβ,α+γ(az
β). (2.40)

1The double factorial is distinct from evaluating the factorial twice. It is defined as
k!! = k(k − 2)(k − 4) . . . and terminates at either 2 or 1, depending on the parity of k.
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We can build a relationship between our two eigenfunctions if we allow α = 1
2
,

β = 1, γ = 1
2
, and a = 1

2λ
, then we get

RL
0D
− 1

2
z (

1√
z
E1, 1

2
(

1

2λ
z)) = E1,1(

1

2λ
z). (2.41)

Multiplying
√
z on both sides gives:

√
z · RL

0D
− 1

2
z

1√
z
E1, 1

2
(

1

2λ
z) =

√
zE1,1(

1

2λ
z). (2.42)

Now, we can make the substitution z = r2, which gives

r̂ · RL
0D
− 1

2

r2 r̂
−1E1, 1

2
(

1

2λ
r2) = r̂E1,1(

1

2λ
r2) (2.43)

demonstrating that the operator r̂D
− 1

2

r2 r̂
−1 brings the first eigenfunction to

the second eigenfunction. For reasons which will be clear in a moment, let’s
divide both sides by 1√

2
to get.(

1√
2
r̂ · RL

0D
− 1

2

r2 r̂
−1

)
E1, 1

2
(

1

2λ
r2) =

1√
2
r̂E1,1(

1

2λ
r2) (2.44)

Performing this operator again gives.(
1√
2
r̂ RL

0D
− 1

2

r2 r̂
−1

)
1√
2
r̂E1,1

(
1

2λ
r2

)
(2.45)

=
1

2
r̂ RL

0D
− 1

2

r2 E1,1

(
1

2λ
r2

)
(2.46)

=
1

2
r̂
√
r̂2E1, 3

2

(
1

2λ
r2

)
(2.47)

=
1

2
r̂2E1, 3

2

(
1

2λ
r2

)
(2.48)

=λE1, 1
2

(
1

2λ
r2

)
, (2.49)

yielding the first eigenfunction. In this case the particular eigenvalue is cho-

sen to be λ = 11 to establish that 1√
2
r̂ RL

0D
− 1

2

r2 r̂
−1 is a square root of the

operator r̂ · 0D−1
r . Note that in fractional calculus, there is no chain rule, so
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D
− 1

2

r2 cannot be easily simplified. This operator can be multiplied by
√

2π to
show that the operator

√
πr̂D

− 1
2

r2 r̂
−1 (2.50)

is a square root of 2πr̂ · 0D
−1
r .

2.2.3 A geometric interpretation of the α-sphere

Beginning with eq. (2.19) we can manipulate it into a form similar to eq.
(2.5).

Vn+α(r) = π
α
2 · RL

0D
−α

2

r2 Vn(r) (2.51)

Vn+α(r) =
π
α
2

Γ(α
2
)

∫ y=r

0

Vn(y)(r2 − y2)
α
2
−1 d

(
y2
)

(2.52)

Vn+α(r) = − π
α
2

Γ(α
2
)

∫ y=r

0

Vn(y)d
(
(r2 − y2)

α
2

)
(2.53)

Let x = (r2 − y2)
α
2 which can be manipulated into y =

√
r2 − x 2

α .

Vn+α(r) =
π
α
2

Γ(α
2
)

∫ x=rα

0

Vn

(√
r2 − x 2

α

)
dx (2.54)

An ordinary n-ball is defined as the set of all points bounded by some par-
ticular radius, i.e. {x ∈ Rn | |x|2 ≤ r2}. The previous equation gives
a geometric interpretation that the α-ball can be expressed similiarly, i.e.

{(x1, x2, . . . , xn) ∈ Rn | x2
1 + x2

2 + . . . + x2
n−1 + x

2
α
n ≤ r2} where n = dαe. 2

A plot of a 1.5-ball is shown in figure (2.1). Note that the dimension that
“receives the fractional dimension” grows slower than the other dimensions
with respect to the radius i.e. the α ball will become more squished as the
radius grows larger.

2d·e is the ceiling function.
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Figure 2.1: A plot of a 1.5-ball ranging from 1 to 3 as described in section
2.2.3 i.e. x

2
α + y2 = r2.
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2.3 Recovering the surface area of spheres in

integer dimensions and the surface area

factor used in dimensional regularization

We can use the
√
πr̂D

− 1
2

r2 r̂
−1 operator to recover Sn(r). Let’s begin with

S1(r) = 2πr.

√
πr̂D

− 1
2

r2 r̂
−1S1(r) (2.55)

=
√
πr̂D

− 1
2

r2 r̂
−12πr (2.56)

=
√
πr̂D

− 1
2

r2 2π (2.57)

=
√
πr̂2π

√
r2Γ(1)

Γ(1
2

+ 1)
(2.58)

=
√
πr̂2π

2r√
π

(2.59)

=r̂2π · 2r (2.60)

=4πr2 = S2(r) (2.61)

This accurately recovers the surface area of a sphere.
Note that there is a case of which needs special attention, namely incre-

menting from S0(r) = 2 to S1(r) = 2πr. This is because this particular case

needs to evaluate I
1
2
x x−

1
2 , which cannot be computed by the power rule. This

is akin to integrating 1
x
.

Using fractional calculus, we can generalize
√
πr̂D

− 1
2

r2 r̂
−1 to π

α
2 r̂D

−α
2

r2 r̂−1.
If we begin with S1 = 2πr, then we get that

Sα+1(r) = π
α
2 r̂D

−α
2

r2 r̂−1 · 2πr (2.62)

Sα+1(r) = π
α
2 r̂D

−α
2

r2 2π (2.63)

Sα+1(r) = 2π
α
2

+1r̂(r2)
α
2

Γ(1)

Γ(α
2

+ 1)
(2.64)

Sα+1(r) =
2π

α
2

+1

Γ(α
2

+ 1)
rα+1 (2.65)

which recovers eq. (2.2).
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Chapter 3

Baker-Hausdorff Theorem and
Fractional Tempered
Derivatives

The tempered Riemann-Liouville fractional derivative, defined in eq. (1.4),
is of the forl of the left-hand-side of the Baker-Hausdorff Theorem: [10]

eÂB̂e−Â = B̂ +
1

1!
[Â, B̂] +

1

2!
[Â, [Â, B̂]] +

1

3!
[Â, [Â, [Â, B̂]]] . . . (3.1)

where Â and B̂ are operators and the commutation is defined as [Â, B̂] =
ÂB̂ − B̂Â. Substituting Â for −λx̂ and B̂ for Dα

x , the first commutation
yields

[−λx̂,Dα
x ]f = −λx̂Dα

xf −Dα
x (−λxf), (3.2)

where f is a “dummy function” for clarity. Note Dα
x , for this section, is

considered to be any arbitrary fractional derivative because the following
proof does not specifically require the Riemann-Liouville definition. The
right hand side can be expanded using the Leibniz product rule for fractional
derivatives, which is valid for all fractional derivatives [1].

Dα
x (−λxf) = −λDα

x (xf) = −λ
∞∑
j=0

(
α

j

)
(Dα−j

x f)(Dj
x(−λx)) (3.3)

where
(
a
b

)
is the binomial coefficient. Because the factor of Dj

xx is nilpotent,
this series only has two nonzero terms when j = 0 and j = 1.

Dα
x (−λxf) = −λ

((
α

0

)
(Dα−0

x f)(D0
xx) +

(
α

1

)
(Dα−1

x f)(D1
xx)

)
. (3.4)
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Simplifying yields

Dα
x (−λxf) = −λ(xDα

xf + αDα−1
x f). (3.5)

Substituting back into eq. (3.2) yields

[−λx̂,Dα
x ]f = −λx̂Dα

xf + λ(xDα
xf + αDα−1

x f), (3.6)

[−λx̂,Dα
x ]f = λαDα−1

x f, (3.7)

and rewriting as an operator, without f :

[−λx̂,Dα
x ] = λαDα−1

x . (3.8)

It can be shown through induction that

[−λx̂,Dα
x ]k = λk(α)kD

α−k
x , (3.9)

where (α)k is the falling factorial, and [·]k refers to a kth order commutation.
A detailed proof can be found in the appendix in section A. Substituting into
eq. (3.1), we get

e−λxDα
xe

λx =
∞∑
k=0

1

k!
λk(α)kD

α−k
x . (3.10)

The factor 1
k!

(α)k can be substituted for
(
α
k

)
e−λxDα

xe
λx =

∞∑
k=0

(
α

k

)
λkDα−k

x . (3.11)

This series is very similiar to Newton’s generalized binomial theorem, which
states

(x+ y)α =
∞∑
k=0

(
α

k

)
xα−kyk (3.12)

where x, y, and α are real and |x| > |y| for convergence. The difference
being that eq. (3.11) includes operators. This is to say that, in some sense,
e−λxDα

xe
λx has a strong relationship to the expression (λ+ d

dx
)α. This relation-

ship is can be reinforced by Herrmann’s claim [1], that following relationship
holds for small λ,

e−λx RLD
α
xe

λxf(x) =
∞∑
k=0

(
α

k

)
λα−k

dk

dxk
(3.13)

which is similar to the right hand side of equation (3.11), but the order of
the derivative and the power of λ is switched.
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Chapter 4

Conclusions

In Chapter 2, I give a strong foundation for the methods of dimensional
regularization by reproducing the existing formulas for the surface area of a
sphere of a non-integer dimension using fractional derivatives. The fractional
operator was also rewritten to give a geometric picture of what a non-integer
dimension sphere may be understood as.

There are two particularly interesting things to note from this work. First,
the spheres of integer dimensions are still described using fractional deriva-
tives i.e. Riemann Liouville half-integration. This indicates that the usage
of fractional calculus is not simply an addendum to n-sphere, but is deeply
related to spheres. Second, it’s well known that there are a variety of equally
valid definitions for a fractional derivative and the Riemann-Liouville defini-
tion is merely just one of them. This work does not rule out the possibility
that another fractional derivative may generalize the n-sphere, which would
be a natural continuation of this work. Furthermore, one might ask whether
or not other such could produce an alternative dimensional regularization.

In Chapter 3, I used the Baker-Hausdorff theorem to produce a series
representation for all tempered fractional derivatives. Because of it’s stark
similarity to the binomial formula, future work may be able to make the
expression (λ+ d

dx
)α rigorous.

These two results show that fractional calculus has an important place in
quantum field theory and invites collaboration between these two communi-
ties.
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Appendix A

Derivation of eq. (3.9)

The left-hand-side of eq. (3.9) is defined as

[−λx̂,Dα
x ]k = [−λx̂, [−λx̂,Dα

x ]k−1] (A.1)

where k is a natural number and [−λx̂,Dα
x ]1 = [−λx̂,Dα

x ].

Proof. Equation (3.8) serves as the base case for this inductive proof. To
prove eq. (3.9), let’s assume the claim as an inductive hypothesis.

[−λx̂,Dα
x ]k+1 = [−λx̂, [−λx̂,Dα

x ]k] (A.2)

[−λx̂,Dα
x ]k+1 = [−λx̂, λk(α)kD

α−k
x ] (A.3)

Because x̂ and Dα
x are linear operators, the constant λk(α)k can be pulled

out of the commutation:

[−λx̂,Dα
x ]k+1 = λk(α)k[−λx̂,Dα−k

x ] (A.4)

Using, eq. (3.8):

[−λx̂,Dα
x ]k+1 = λk(α)k · λ(α− k)Dα−k−1

x (A.5)

[−λx̂,Dα
x ]k+1 = λk+1(α)k+1D

α−(k+1)
x (A.6)
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